Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of bijective functions f: 1,3,5, 7, ldots ldots . .99 arrow 2,4,6,8, ldots ldots . ., 100 such that f (3) ≥ f (9) ≥ f (15) ≥ f (21) ≥ ldots . . f (99), is
Q. The number of bijective functions
f
:
{
1
,
3
,
5
,
7
,
……
..99
}
→
{
2
,
4
,
6
,
8
,
……
..
,
100
}
, such that
f
(
3
)
≥
f
(
9
)
≥
f
(
15
)
≥
f
(
21
)
≥
…
..
f
(
99
)
,
is _____
400
142
JEE Main
JEE Main 2022
Permutations and Combinations
Report Error
A
50
P
17
10%
B
50
P
33
10%
C
33
!
×
17
!
80%
D
2
50
!
0%
Solution:
f
:
{
1
,
3
,
5
,
7
,
…
..99
}
→
{
2
,
4
,
6
,
8
,
…
.
,
100
}
f
(
3
)
≥
f
(
9
)
≥
f
(
15
)
≥
……
.
f
(
99
)
…
..
(1)
3
,
9
,
15
,
…
..99
⇒
17
numbers
for condition one we have
50
C
17
×
1
way rest
33
elements
33
!
=
50
C
17
×
33
!
=
50
C
33
×
33
!
=
50
P
33
.