Digits are 1,2,3,4,5,7,9
Multiple of 11→ Difference of sum at even & odd place is divisible by 11 .
Let number of the form abcdefg ∴(a+c+e+g)−(b+d+f)=11x a+b+c+d+e+f=31 ∴ either a+c+e+g=21 or 10 ∴b+d+f=10 or 21
Case- 1 a+c+e+g=21 b+d+f=10
(b, d, f) ∈{(1,2,7)(2,3,5)(1,4,5)}
(a, c, e, g) ∈{(1,4,7,9),(3,4,5,9),(2,3,7,9)} ∴ Total number in case- 1=(3!×3)(4!)=432
Case- 2 a+c+e+g=10 b+d+f=21 (a,b,e,g)∈{1,2,3,4)} (b,d,f)&{(5,7,9)} ∴ Total number in case 2=3!×4!=144 ∴ Total numbers =144+432=576