Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of 2 × 2 matrices A=[a b c d] for which [a b c d]-1=[1 / a 1 / b 1 / c 1 / d],(a, b, c, d ∈ R ) text is
Q. The number of
2
×
2
matrices
A
=
[
a
c
b
d
]
for which
[
a
c
b
d
]
−
1
=
[
1/
a
1/
c
1/
b
1/
d
]
,
(
a
,
b
,
c
,
d
∈
R
)
is
86
118
Matrices
Report Error
A
0
8%
B
1
58%
C
2
14%
D
infinite
21%
Solution:
If
a
d
−
b
c
=
0
, then
A
−
1
=
a
d
−
b
c
1
∣
∣
d
−
c
−
b
a
∣
∣
Thus,
a
d
−
b
c
d
=
a
1
⇔
a
d
=
a
d
−
b
c
⇔
b
c
=
0
⇔
b
=
0
or
c
=
0
Therefore,
∣
∣
a
c
b
d
∣
∣
−
1
=
∣
∣
1/
a
1/
c
1/
b
1/
d
∣
∣
is never possible.