Let n th term of the series is tn and sum is S.
Then, S=1+2+5+12+25+46+...+tn S=1+2+5+12+25+...+tn−1+tn
On subtracting, we get 0=1+1+3+7+13+21+...+(tn−tn−1)−tn ∴Tn=1+{1+3+7+13+21+...+ upto (n−1)}
Let (n−1) th term and sum of the series 1+3+7+13+21+... are tn−1 and S′,
respectively. Then, S′=1+3+7+13+21+....+tn−1 S′=1+3+7+13+...+tn−2+tn−1
On subtracting, we get 0=1+2+4+6+8+...+(tn−1−tn−2)−tn−1 ∴tn−1=1+2{1+2+3+4+... upto (n−2)} =1+2⋅21(n−2)(n−1)=n2−3n+3 ⇒tn=(n+1)2−3(n+1)+3 =n2−n+1 ∴tn=1+{1+3+7+13+... upto (n−1)} =1+n=1∑n−1(n2−n+1) =1+n=1∑n−1n2−n=1∑n−1n+n=1∑n−11 =1+61n(n−1)(2n−1) −21n(n−1)+(n−1) =31n(n−1)(n−2)+n
Hence, tn=31n(n−1)(n−2)+n