Q.
The normal to the curve x=a(cosθ+θsinθ).y=a(sinθ−θcosθ) at any point ′θ′ is such that :
2938
189
AIEEEAIEEE 2005Application of Derivatives
Report Error
Solution:
Key Idea : Equation of normal at any point (x1y1) on any curve is y−y1=−(dxdy)(x1,y1)1(x−x1)
Given that x=a(cosθ+θsinθ) dθdx=a(−sinθ+sinθ+θcosθ) ⇒dθdx=aθcosθ
and y=a(sinθ−θcosθ) ⇒dθdy=aθsinθ ∴dydx=−dx/dθdy/dθ=tanθ
Slope of normal =−dydx=−cotθ=tan(2π+θ)
So equation of normal is y−asinθ+aθcosθ=−sinθcosθ(x−acosθ−asinθ) ⇒sin0y−asin2θ+aθcosθsinθ =−xcos0+acos2θ+aθsinθcosθ ⇒xcosθ+ysinθ=a
It is always at a constant distance ′a′ from origin.