Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The normal at a point P on the ellipse x2+4 y2=16 meets the x-axis at Q. If M is the mid point of the line segment PQ, then the locus of M intersects the latus rectums of the given ellipse at the points
Q. The normal at a point
P
on the ellipse
x
2
+
4
y
2
=
16
meets the
x
-axis at
Q
. If
M
is the mid point of the line segment
PQ
, then the locus of
M
intersects the latus rectums of the given ellipse at the points
1817
178
JEE Advanced
JEE Advanced 2009
Report Error
A
(
±
2
3
5
,
±
7
2
)
B
(
±
2
3
5
,
±
4
19
)
C
(
±
2
3
,
±
7
1
)
D
(
±
2
3
,
±
7
4
3
)
Solution:
Normal is
4
x
sec
ϕ
−
2
y
cosec
ϕ
=
12
Q
=
(
3
cos
ϕ
,
0
)
M
=
(
α
,
β
)
α
=
2
3
c
o
s
ϕ
+
4
c
o
s
ϕ
=
2
7
cos
ϕ
⇒
cos
ϕ
=
7
2
α
β
=
sin
ϕ
cos
2
ϕ
+
sin
2
ϕ
=
1
⇒
49
4
α
2
+
β
2
=
1
⇒
49
4
x
2
+
y
2
=
1
⇒
latus rectum
x
=
±
2
3
49
48
+
y
2
=
1
⇒
y
=
±
7
1
(
±
2
3
,
±
1/7
)
.