Q.
The modulus of the complex number z such that ∣z+3−i∣=1 and arg(z)=π is equal to
3848
187
KEAMKEAM 2010Complex Numbers and Quadratic Equations
Report Error
Solution:
Let z=x+iy ∴∣z+3−i∣=1 ⇒∣x+iy+3−i∣=1 ⇒∣x+3+i(y−1)∣=1 ⇒(x+3)2+(y−1)2=1 ...(i) But tan−1xy=π ⇒y=0 ...(ii) ∴ From Eqs. (i) and (ii), we get (x+3)2=0 ⇒x=−3,−3 ∴ Required complex number is x+iy=−3 ∴∣x+iy∣=∣−3∣=3