Q.
The modulus of the complex number z such that ∣z+3−i∣=1 and arg(z)=π is equal to
108
164
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let z=x+iy ∴∣z+3−i∣=∣(x+3)+i(y−1)∣=1 ⇒(x+3)2+(y−1)2=1...(i) ∵argz=π ⇒tan−1xy=π ⇒xy=tanπ=0 ⇒y=0...(ii)
From Eqs. (i) and (ii), we get x=−3,y=0 ∴z=−3 ⇒∣z∣=∣−3∣=3