Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of x log x is equal to
Q. The minimum value of
x
lo
g
x
is equal to
296
162
Manipal
Manipal 2018
Report Error
A
e
B
e
1
C
−
e
1
D
e
2
Solution:
Let
y
=
x
lo
g
e
x
On differentiating w.r.t.
x
, we get
d
x
d
y
=
x
⋅
x
1
+
lo
g
x
=
(
1
+
lo
g
x
)
Again, differentiating, we get
d
x
2
d
2
y
=
x
1
Put,
d
x
d
y
=
0
for maxima or minima.
⇒
1
+
lo
g
x
=
0
⇒
x
=
e
1
∴
(
d
x
2
d
2
y
)
(
x
=
c
1
)
=
e
∴
y
is minimum at
x
=
e
1
∴
y
m
i
n
=
e
1
lo
g
e
(
e
1
)
=
−
e
1