Let f(x)=logxx
On differentiating w.r.t. x, we get f′(x)=(logx)2logx−1
For maxima and minima, put f′(x)=0 logx−1=0 ⇒x=e
Now , f′′(x)=(logx)4(logx)2⋅x1−(logx−1)⋅x2logx ⇒f"(e)=1e1−0=e1>0 ∴f(x) is minimum at x=e.
Hence, minimum value of f (x) at x = e is f(e)=logee=e