dxdy=dxd(x4−2x2+1) =4x3−4x=4x(x2−1)
For max. or min, dxdy=0 ⇒4x(x2−1)=0
either x=0 or x=±1 x=0 and x=−1
does not belong to [21,2] dx2d2y=12x2−4 ⇒(dx2d2y)x=1=12(1)2−4=8>0 ∴ there is minimum value of function at x=1 ∴ minimum value is y(1)=14−2(1)2+1=1−2+1=0