Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of the function f(x)=( tan (x+(π/6))/ tan x) is
Q. The minimum value of the function
f
(
x
)
=
t
a
n
x
t
a
n
(
x
+
6
π
)
is
175
117
Application of Derivatives
Report Error
A
0
B
1/2
C
1
D
3
Solution:
f
(
x
)
has a period equal to
π
&
can take values
(
−
∞
,
∞
)
⇒
3
is the local minimum value.
y
=
2
s
i
n
x
c
o
s
(
x
+
6
π
)
2
s
i
n
(
x
+
6
π
)
c
o
s
x
=
s
i
n
(
2
x
+
6
π
)
−
s
i
n
6
π
s
i
n
(
2
x
+
6
π
)
+
s
i
n
6
π
=
1
+
s
i
n
(
2
x
+
6
π
)
−
s
i
n
6
π
1
y
is minimum if
2
x
+
6
π
=
2
π
⇒
x
=
6
π
⇒
y
m
i
n
=
1
+
2
=
3
]