Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of the function f(x)=∫ limits02 e|x-t| d t is :
Q. The minimum value of the function
f
(
x
)
=
0
∫
2
e
∣
x
−
t
∣
d
t
is :
568
131
JEE Main
JEE Main 2023
Integrals
Report Error
A
2
0%
B
2
(
e
−
1
)
67%
C
2
e
−
1
33%
D
e
(
e
−
1
)
0%
Solution:
For
x
≤
0
f
(
x
)
=
0
∫
2
e
t
−
x
d
t
=
e
−
x
(
e
2
−
1
)
For
0
<
x
<
2
f
(
x
)
=
0
∫
x
e
x
−
t
d
t
+
∫
x
2
e
t
−
x
d
t
=
e
x
+
e
2
−
x
−
2
For
x
≥
2
f
(
x
)
=
0
∫
2
e
x
−
t
d
t
=
e
x
−
2
(
e
2
−
1
)
For
x
≤
0
,
f
(
x
)
is
↓
and
x
≥
2
,
f
(
x
)
is
↑
∴
Minimum value of
f
(
x
)
lies in
x
∈
(
0
,
2
)
Applying
A
.
M
≥
G
.
M
,
minimum value of
f
(
x
)
is
2
(
e
−
1
)