Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of p for which the lines 3x-4y=2,3x-4y=12,12x+5y=7 and 12x+5y=p constitute the sides of a rhombus is
Q. The minimum value of
p
for which the lines
3
x
−
4
y
=
2
,
3
x
−
4
y
=
12
,
12
x
+
5
y
=
7
and
12
x
+
5
y
=
p
constitute the sides of a rhombus is
821
173
NTA Abhyas
NTA Abhyas 2022
Report Error
A
33
B
19
C
−
19
D
9
Solution:
If the parallelogram is a rhombus, the distance between pair of parallel sides is equal.
Hence,
3
2
+
4
2
12
−
2
=
±
1
2
2
+
5
2
p
−
7
⇒
p
−
7
=
±
26
⇒
p
=
33
or
−
19
Hence, the minimum value of
p
is
−
19