ABCD(A2+A+1)(B2+B+1)(C2+C+1)(D2+D+1) =(A+A1+1)(B+B1+1)(C+C1+1)(D+D1+1)
Since A>0 ,
So, 2A+A1≥A×A1⇒A+A1≥2 (Using AM-GM inequality)
Similarly, B+B1≥2,C+C1≥2&D+D1≥2 . ∴(A+A1+1)(B+B1+1)(C+C1+1)(D+D1+1) ≥(2+1)×(2+1)×(2+1)×(2+1) =3×3×3×3 =34 =81
Hence, ABCD(A2+A+1)(B2+B+1)(C2+C+1)(D2+D+1)≥81 .
So, the required minimum value is 81 .