Let y=4e2x+9e−2x ∴dxdy=8e2x−18e−2x ⇒ x dx2d2y=16e2x+36e−2x
For minimum, put dxdy=0 ⇒8e2x−18e−2x=0 ⇒8e2x=18e−2x ⇒e4x=818=49 ⇒4x=log49 ⇒x=41log49
At x=41log49 dx2d2y>0 ∴ Minimum value at x=41log49
is y=4e2(41log49)+9e−2(41log49) =4elog(49)1/2+9elog(49)−1/2 =4(49)1/2+9(49)−1/2 =4.23+9.32=6+6=12