Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of 2x3 - 9x2 + 12x + 4 is
Q. The minimum value of
2
x
3
−
9
x
2
+
12
x
+
4
is
1920
236
KEAM
KEAM 2016
Application of Derivatives
Report Error
A
4
5%
B
5
6%
C
6
11%
D
7
6%
E
8
6%
Solution:
Let
y
=
2
x
3
−
9
x
2
+
12
x
+
4
On differentiating w.r.t.
x
, we get
d
x
d
y
=
6
x
2
−
18
x
+
12
f
′
(
x
)
=
0
∴
6
x
2
−
18
x
+
12
=
0
⇒
x
2
−
3
x
+
2
=
0
⇒
(
x
−
2
)
(
x
−
1
)
=
0
x
=
2
or 1
Now,
d
x
2
d
2
y
=
12
x
−
18
>
0
,
for
x
=
2
∴
x
=
2
is a point of local
y
m
i
n
=
16
−
36
+
24
+
4
=
8