Let y=2cosθ+sinθ1+2tanθdθdy=−2sinθ−cosecθcotθ+2sec2θ=−2sinθ−sinθcosθ.sinθ1+2cos2θ1 For extremum, put, dxdy=0⇒θ=4π Now, dx2d2y=−2cosθ−[−cosec3θ+cot3cosecθ]+2.2secθtanθsecθ=−2cosθ+cosec3θ−cot2θcosecθ+22sec2θtanθ>0 for θ=4π∴ y is minimum for θ=4π.⇒min(y)=2.21+2+2(1)=22+2=32