Let d= distance of a point (x,y), of the parabola from the point (4,2) ∴D=d2=(x−4)2+(y−2)2 =x2+16−8x+y2−4y+4 [∵y2=8x] =64y4+16−y2−4y+4 =64y4−4y+20 ∴dyd(D)=644y3−4 and dy2d2(D)=6412y2>0 ∴D is Min when dyd(D) ⇒644y3−4=0 ⇒y3=64 ⇒y=4.
But y2=8x ∴16=8x ⇒x=2. ∴ reqd. min. distance =(2−4)2+(4−2)2 =4+4=8=22