Let the other two observations be a, b. Then, the five observations are, 1, 2, 6, a, b.
We have, mean xˉ=4 ⇒5a+b+1+2+6=4 ⇒a+b=11…(i)
Also, σ2=n∑(xi−xˉ)2=5.2 ⇒5(1−4)2+(2−4)2+(6−4)2+(a−4)2+(b−4)2=5.2 ⇒(a−4)2+(b−4)2=26−9−4−4=9 ⇒a2+16−8a+b2+16−8b=9 ⇒a2+b2−8(a+b)=−23 ⇒a2+b2−88=−23(using(i)) ⇒a2+b2=65 ⇒(a+b)2−2ab=65 ⇒2ab=121−65 ⇒ab=28…(ii)
Now, (a−b)2=(a+b)2−4ab=(11)2−4×28=9 ⇒a−b=±3…(iii)
Solving (i) and (iii), we get a=7, b=4, if a−b=3 ⇒a=4, b=7, if a−b=−3