Let the observations be 2,4,6,x,y.
Now, Xˉ=NΣxi ⇒4=52+4+6+x+y ⇒x+y=8...(i)
Also, σ2=NΣxi2−(Xˉ)2 ⇒(5.2)2=54+16+36+x2+y2−(4)2 ⇒x2+y2=50....(ii)
From Eqs. (i) and (ii), we get x2+(8−x)2=50 ⇒2x2−16x+64=50 ⇒2x2−16x+14=0 ⇒x2−8x+7=0 ⇒(x−1)(x−7)=0 ⇒x=1,7 ⇒y=7,1
Hence, remaining two observations are 1 and 7 .