Given that, y=28−x
Let p=xy=x(28−x) =28x−x2
On differentiating w.r.t. x, we get dxdp=21(8−2x)
Put dxdp=0 for maxima or minima ∴8−2x=0 ⇒x=4
Again dx2d2p=21(−2)=−1 (dx2d2p)x=4=−1<0
Thus, function is maximum at x=4 and y=2
Therefore, maximum value of p=4×2=8 .