Let y=xe−x
On differentiating w.r.t. ' x ', we get dxdy=xe−x(−1)+e−x dxdy=e−x(1−x)
For maximum or minimum, dxdy=0 ⇒e−x(1−x)=0 ⇒1−x=0 ∵e−x=0) ⇒x=1
From Eq. (ii), we get dx2d2y=e−x(−1)+(1−x)e−x(−1) =−e−x−e−x+xe−x =−2e−x+xe−x dx2d2y=e−x(x−2) (dx2d2y)at x=1=e−1(1−2)=e1(−1)
Negative value ∴ At x=1,y is maximum and maximum value =1e−1 =e1