Given, y=2tanx−tan2x...(i) ∴dxdy=2sec2x−2tanx⋅sec2x =2sec2x(1−tanx)...(ii)
At point of maxima, dxdy=0 2sec2x(1−tanx)=0 [From Eq. (ii)] ∴x=4π,2π
Here, x=2π is not possible] ∴x=4π [∵x∈[0,2π] (given)
Now, dx2d2y=4secx⋅secx⋅tanx(1−tanx)+2sec2x(0−sec2x) =4sec2xtanx−4sec2xtan2x−2sec4x ∴dx2d2y∣∣x−4π=4sec24πtan4π−4sec24π tan24π−2sec44π =4(2)2⋅1−4(2)2⋅(1)2−2⋅(2)4 =8−8−8 =−8 which is negative. ∴ At x=4π, function y=2tanx−tan2x
has maximum value. ∴ Maximum value of function at point x=4π, will be [y]x−4π=1