For the maximum value of sin2θ+3sinθcosθ+5cos2θ1 sin2θ+5cos2θ+3sinθcosθ should be minimum. sin2θ+5cos2θ+3sinθcosθ=sin2θ+cos2θ+4cos2θ+23⋅2sinθcosθ =1+4cos2θ+23sin2θ(∵sin2A+cos2A=1&2sinAcosA=sin =1+4(21+cos2θ)+23sin2θ(∵cos2A=21+cos2A) =23sin2θ+2(1+cos2θ)+1 =3+23sin2θ+cos2θ
We know that, −a2+b2≤acosθ+bsinθ≤a2+b2
Therefore, minimum value of 23sin2θ+2cos2θ+3 =−(23)2+22+3 =−25+3 =21
Hence, the maximum value of given function is 2 .