Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value of ( log x/x) in (2,∞) is
Q. The maximum value of
x
l
o
g
x
in
(
2
,
∞
)
is
2484
197
Application of Derivatives
Report Error
A
1
18%
B
e
2
14%
C
e
32%
D
e
1
36%
Solution:
Let
y
=
x
l
o
g
x
and
∴
d
x
d
y
=
x
2
1
−
l
o
g
x
and
d
x
2
d
2
y
=
x
4
x
2
(
−
x
1
)
−
(
1
−
l
o
g
x
)
2
x
=
x
3
−
1
−
(
1
−
l
o
g
x
)
2
=
x
3
2
l
o
g
x
−
3
y
is Max. or Min. when
d
x
d
y
=
0
⇒
l
o
g
x
=
1
⇒
x
=
e
For
x
=
e
,
d
x
2
d
2
y
<
0
∴
y
is Max. of
x
=
e
∴
Max. of
y
=
e
l
o
g
e
=
e
1