Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value of ( ln x/x) in (2, ∞) is
Q. The maximum value of
x
l
n
x
in
(
2
,
∞
)
is
532
164
Application of Derivatives
Report Error
A
1
31%
B
e
24%
C
2/
e
14%
D
1/
e
31%
Solution:
Let
y
=
x
l
n
x
d
x
d
y
=
x
2
x
⋅
x
1
−
l
n
x
⋅
1
=
x
2
1
−
l
o
g
x
For maxima, put
d
x
d
y
=
0
⇒
x
2
1
−
l
n
x
=
0
⇒
x
=
e
Now,
d
x
2
d
2
y
=
(
x
2
)
2
x
2
(
−
x
1
)
−
(
1
−
l
n
x
)
2
x
At
x
=
e
,
d
x
2
d
2
y
<
0
∴
The maximum value at
x
=
e
is
y
=
e
1