Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The- maximum value of function x3 - 12x2 + 36x + 17 in the interval [1,10] is
Q. The- maximum value of function
x
3
−
12
x
2
+
36
x
+
17
in the interval
[
1
,
10
]
is
2523
184
MHT CET
MHT CET 2008
Report Error
A
17
B
177
C
77
D
None of these
Solution:
Let
f
(
x
)
=
x
3
−
12
x
2
+
36
x
+
17
∴
f
′
(
x
)
=
3
x
2
−
24
x
+
36
=
0
For maxima, put
f
′
(
x
)
=
0
⇒
3
x
2
−
24
x
+
36
=
0
⇒
(
x
−
2
)
(
x
−
6
)
=
0
⇒
x
=
2
,
6
Again,
f
′′
(
x
)
=
6
x
−
24
is negative at
x
=
2
So that,
f
(
6
)
=
17
,
f
(
2
)
=
49
At the end points,
f
(
1
)
=
42
,
f
(
10
)
=
177
So that,
f
(
x
)
has its maximum value
177
.