We have, f(x)=xlogx,0<x<∞
Maximum or minimum point is given by f′(x)=0 f′(x)=x2xx1−logx.1=0⇒x21−logx=0 ⇒1=logx⇒x−e
Now f"(x)=x4x2(x−1)−(1−logx)2x =x3−1−2+2logx=x3−3+2logxf"(x)x=e=e3−1<0 ⇒x=e is a maximum.point and maximum value of f(x) is given by , f(e)=eloge=e1