Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value of f(x)=(3 x2 + 9 x + 17/3 x2 + 9 x + 7) is 5 k+1 , then the value of k is
Q. The maximum value of
f
(
x
)
=
3
x
2
+
9
x
+
7
3
x
2
+
9
x
+
17
is
5
k
+
1
, then the value of
k
is
92
169
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
8
Solution:
Given that,
f
(
x
)
=
3
x
2
+
9
x
+
7
3
x
2
+
9
x
+
7
+
10
⇒
f
(
x
)
=
1
+
3
x
2
+
9
x
+
7
10
Now,
3
x
2
+
9
x
+
7
≥
4
1
if
a
>
0
then
a
x
2
+
b
x
+
c
≥
4
a
−
D
⇒
0
<
3
x
2
+
9
x
+
7
1
≤
4
⇒
0
<
3
x
2
+
9
x
+
7
10
≤
40
⇒
1
<
3
x
2
+
9
x
+
7
10
+
1
≤
41
Maximum value of
f
(
x
)
is 41 .
5
k
+
1
=
41
⇒
k
=
8