Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value of ( cos α1) ⋅( cos α2) ldots ldots ldots( cos αn), under the restrictions 0 ≤ α1, α2, ldots ldots ldots ldots, αn ≤ (π/2) and cot α1 ⋅ cot α2 ldots ldots ldots cot αn=1 is
Q. The maximum value of
(
cos
α
1
)
⋅
(
cos
α
2
)
………
(
cos
α
n
)
, under the restrictions
0
≤
α
1
,
α
2
,
…………
,
α
n
≤
2
π
and
cot
α
1
⋅
cot
α
2
………
cot
α
n
=
1
is
274
133
Application of Derivatives
Report Error
A
2
n
/2
1
B
2
n
1
C
2
n
1
D
1
Solution:
Given
cos
α
1
cos
α
2
−
cos
α
3
…
.
cos
α
n
=
sin
α
1
sin
α
2
……
sin
α
n
y
=
(
cos
α
1
)
(
cos
α
2
)
……
(
cos
α
n
)
(
sin
α
1
)
(
sin
α
2
)
(
sin
α
3
)
…
(
sin
α
n
)
[
M
−
1
]
y
2
=
(
cos
α
1
)
(
cos
α
2
)
…
(
cos
α
n
)
(
sin
α
1
)
(
sin
α
2
)
…
(
sin
α
n
)
y
2
=
2
n
1
(
sin
2
α
1
)
(
sin
2
α
1
)
…
(
sin
+
α
n
)
∴
y
m
a
x
2
=
2
n
1
⇒
y
m
a
x
=
2
4/2
1
[
M-2]
2
1
+
t
a
n
2
α
1
≥
(
1
+
tan
2
α
)
1/2
=
tan
α
1
∴
1
+
tan
2
α
1
≥
2
tan
α
1
sec
α
1
sin
α
2
…
.
sin
α
n
≥
2
4/2
sec
2
α
1
≥
2
tan
α
1
sec
2
α
2
≥
2
tan
α
2
sec
2
α
n
≥
2
tan
α
n
∴
cos
1
cos
α
2
……
cos
α
n
≤
2
n
/2
1