5cosθ+3cos(θ+3π)+3 =5cosθ+3[cosθcos60∘−sinθsin60∘]+3 =5cosθ+3[2cosθ−23sinθ]+3 =213cosθ−233sinθ+3
Let 213=a and 233=b
Then expression becomes, acosθ−bsinθ+3
Maximum value of this type of expression is equal to [a2+b2]21+3= Maximum value
After putting values of a and b, we get [49]21+3= Max value 10− Max value