Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value M of 3x + 5x - 9x + 15x - 25x, as x varies over reals, satisfies
Q. The maximum value
M
of
3
x
+
5
x
−
9
x
+
1
5
x
−
2
5
x
, as
x
varies over reals, satisfies
2107
205
KVPY
KVPY 2012
Report Error
A
3
<
M
<
5
B
0
<
M
<
2
C
9
<
M
<
25
D
5
<
M
<
9
Solution:
Let
f
(
x
)
=
3
x
+
5
x
−
9
x
+
1
5
x
−
2
5
x
f
(
x
)
=
3
x
+
5
x
−
3
2
x
+
3
x
⋅
5
x
−
5
2
x
Maximum value of
f
(
x
)
is
M
.
∴
M
=
3
x
+
5
x
−
3
2
x
−
3
x
⋅
5
x
−
5
2
x
M
=
a
+
b
−
a
2
+
ab
−
b
2
[
∵
3
x
=
a
,
5
x
=
b
]
⇒
a
+
b
+
ab
−
(
a
2
+
b
2
)
⇒
M
≤
a
+
b
+
ab
−
2
ab
[
∵
−
(
a
2
+
b
2
)
≤
−
2
ab
]
⇒
M
≤
a
+
b
−
ab
⇒
M
≤
1
−
(
a
−
1
)
(
b
−
1
)
So, maximum value of
M
is
1
at
x
=
0
∴
0
<
M
<
2
.