Let (x1,y2) lie on the line ∴3x1−4y2−a(a−2)=0⇒4y2=3x1−a(a−2)
Now, y2<y1⇒43x1−a(a−2)<y1
Putting x1=2b+3,y1=b2 , we get, ⇒3(2b+3)−a(a−2)<4b2. ⇒a2−2a+4b2−6b−9>0
Now ∀a∈R , D<0 ⇒4−4(4b2−6b−9)<0 ⇒1−4b2+6b+9<0⇒4b2−6b+10>0 ⇒2b2−3b−5>0⇒(2b−5)(b+1)>0 ⇒b∈(−∞,−1)∪(25,∞)
Hence, the maximum negative integer value of b is −2