The given ellipse is a2x2+b2y2=1.
Let A≡(acosθ,−bsinθ)
Then, C≡(acosθ,−bsinθ) Δ= Area of △ABC=21×AC×BD=AD×BD =bsinθ(a−acosθ) =21ab(2sinθ−sin2θ)
Now, dθdΔ=21ab(2cosθ−2cos2θ)=0...(1) ⇒cos2θ=cosθ⇒2cos2θ−cosθ−1=0⇒(2cosθ+1)(cosθ−1)=0 ⇒cosθ=2−1 or cosθ=1
If θ=0,Δ=0, which is not possible. ∴θ=2π/3. ∴Δmax=433ab [substitiuting the value of θ in (1)]