Let the equation of an ellipse be a2x2+b2y2=1, then any point P on the ellipse is (acosθ,bsinθ).
From P, draw PM⊥OX and produce it to meet the ellipse at Q, then APQ is an isosceles triangle, let S be its area, then S=2×21×AM×MP=(OA−OM)×MP =(a−acosθ)⋅bsinθ ⇒S=ab(sinθ−sinθcosθ)=ab(sinθ−21sin2θ)
On differentiating w.r.t. θ, we get dθdS=ab(cosθ−cos2θ)
Again, differentiating w.r.t. θ, we get dθ2d2S=ab(−sinθ+2sin2θ)
For maxima or minima, put dθdS=0 ⇒cosθ=cos2θ ⇒2θ=2π−θ ⇒θ=32π
At θ=32π, (dθ2d2S)θ−32π=ab[−sin32π+2sin(2×32π)] =ab[−sin(π−3π)+2sin(π+3π)] =ab(−sin3π−2sin3π) [∵sin(π−3π)=sin3π,sin(π+3π)=−sin3π] =ab(−23−223) =ab(2−33)=2−33ab<0 ∴S is maximum, when θ=32π and maximum value of S=ab(sin32π−sin32πcos32π)(∵sin2θ=2sinθcosθ) =ab[sin(π−3π)−sin(π−3π)cos(π−3π)] =ab(sin3π−sin3π×(−cos3π)) =ab(sin3π+sin3πcos3π)=ab(23+23×21) =ab(423+3)=433ab sq unit
Thus, maximum area of isosceles triangle is 433 ab sq unit.