If any square matrix is singular, then the value of determinant is zero.
Let A=∣∣52−110−4−236b∣∣
Since, A is singular. ∴∣∣5−2−110−4−236b∣∣=0 ⇒5(−4b+12)−10(−2b+6)+3(4−4)=0 ⇒−20b+60+20b−60+0=0 ⇒0=0 ∴ The given matrix is singular for any value of b .
For a non-singular matrix, the value of determinant is non-zero.