Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The locus of the trisection point of any arbitrary double ordinate of the parabola x2=4y, is
Q. The locus of the trisection point of any arbitrary double ordinate of the parabola
x
2
=
4
y
,
is
594
169
NTA Abhyas
NTA Abhyas 2022
Report Error
A
9
x
2
=
y
B
3
x
2
=
2
y
C
9
x
2
=
4
y
D
9
x
2
=
2
y
Solution:
Let
A
≡
(
2
t
,
t
2
)
,
B
≡
(
−
2
t
,
t
2
)
be the extremities on the double ordinate
A
B
.
Let
C
(
h
,
k
)
be it’s trisection point, then
6
h
=
4
t
and
k
=
t
2
⇒
t
=
2
3
h
,
t
2
=
k
⇒
k
=
4
9
h
2
Thus, locus of
C
is
9
x
2
=
4
y