Given that, parabola x2=−8y
Here, on comparing with x2=4ay ⇒4a=−8⇒a=−2
Let the parametric coordinate of parabola x2=−8y is, P→(4t,−2t2)
and the other coordinate of latusrectum is P′→(t−4,t2−2)
Now, the equation tangent of parabola x2=−8y x⋅x1=−4(y+y1)...(i)
At Px(4t)=−4(y−2t2) xt=−y+2t2 xt+y=2t2...(ii) ⇒x(t−4)=−4(y−t22) ⇒tx=y−t22 ⇒xt=yt2−2 ⇒xt−yt2=−2...(iii)
On solving Eqs. (i) and (ii) xt3+yt2=2t4 xt−yt2=−2
___________________ xt(1+t2)=−2(1−t4) xt(1+t2)=−2(1+t2)(1−t2) tx=−2(1−t2)...(iv)
From Eq. (ii) −2(1−t2)+y=2t2 ⇒−2+2t2+y=2t2 ⇒y=2
Hence, the intersection point of both tangent lying on Q.
ie, y=2. Which is the required locus.