Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The locus of the point of intersection of the tangents drawn at the ends of a focal chord of the parabola $x^2=-8y$ is _______

KCETKCET 2010Conic Sections

Solution:

Given that, parabola $x^{2}=-8 y$
image
Here, on comparing with $x^{2}=4 a y$
$\Rightarrow 4 a=-8 \Rightarrow a=-2$
Let the parametric coordinate of parabola
$x^{2}=-8 y$ is, $P \rightarrow\left(4 t,-2 t^{2}\right)$
and the other coordinate of latusrectum is
$P' \rightarrow\left(\frac{-4}{t}, \frac{-2}{t^{2}}\right)$
Now, the equation tangent of parabola $x^{2}=-8 y$
$x \cdot x_{1}=-4\left(y+y_{1}\right)$...(i)
At $P x(4 t)=-4\left(y-2 t^{2}\right)$
$x t=-y+2 t^{2}$
$x t+ y=2 t^{2}$...(ii)
$\Rightarrow x\left(\frac{-4}{t}\right)=-4\left(y-\frac{2}{t^{2}}\right)$
$\Rightarrow \frac{x}{t}=y-\frac{2}{t^{2}}$
$\Rightarrow x t=y t^{2}-2$
$\Rightarrow x t-y t^{2}=-2$...(iii)
On solving Eqs. (i) and (ii)
$x t^{3}+y t^{2} =2 t^{4}$
$x t-y t^{2} =-2$
___________________
$x t\left(1+t^{2}\right) =-2\left(1-t^{4}\right)$
$x t\left(1+t^{2}\right) =-2\left(1+t^{2}\right)\left(1-t^{2}\right)$
$t x =-2\left(1-t^{2}\right)$...(iv)
From Eq. (ii)
$-2\left(1-t^{2}\right)+y =2 t^{2}$
$\Rightarrow -2+2 t^{2}+y =2 t^{2}$
$\Rightarrow y =2$
Hence, the intersection point of both tangent lying on $Q$.
ie, $y=2 .$ Which is the required locus.