Any tangent to y2=4(x+1) is y=m(x+1)+m1...(1)
Any tangent to y2=8(x+2)is y=m′(x+2)+m2...(2)
Since (1) and (2) are ⊥ ∴mm′=−1 ∴m=−m1
Putting in (2), we get y=−m1(x+2)−2m...(3) (1)−(3), gives 0=(m+m1)x+m+m1+m2+2m
i.e., 0=(m+m1)x+3(m+m1)
i.e., 0=(x+3)(m+m1) ⇒x+3=0(∵m+m1=0)