Equation of ellipse is x2+3y2=6 or 6x2+2y2=1.
Equation of the tangent is axcosθ+bysinθ=1
Let (h,k) be any point on the locus. ∴ahcosθ+bksinθ=1.... (i)
Slope of the tangent line is a−bcotθ.
Slope of perpendicular drawn from centre (0,0) to (h,k) is k/h.
Since, both the lines are perpendicular. ∴(hk)×(−abcotθ)=−1 ⇒hacosθ=kbsinθ=α [say] ⇒cosθ=αha sinθ=αkb
From Eq. (i), ah(αha)+bk(αkb)=1 ⇒h2α+k2α=1 ⇒α=h2+k21
Also,sin2θ+cos2θ=1 ⇒(αkb)2+(αha)2=1 ⇒α2k2b2+α2h2a2=1 ⇒(h2+k2)2k2b2+(h2+k2)2h2a2=1 ⇒(h2+k2)22k2+(h2+k2)26h2=1 [∵a2=6,b2=2] ⇒6x2+2y2=(x2+y2)2
[replacing k by y and h by x]