Q.
The locus of the centroid of the triangle whose vertices are (3cosα,3sinα) , (9sinα,−9cosα) and (1,0) is a circle of radius R , then the value of 29R2 is equal to.
Let centroid of ΔABC is (h,k) ⇒h=33cosα+9sinα+1 & k=33sinα−9cosα+0 ⇒3(cosα+3sinα)=3h−1 & 3(sinα−3cosα)=3k ⇒9(cosα+3sinα)2=(3h−1)2 & 9(sinα−3cosα)2=9k2 ⇒(3h−1)2+9k2=9[(cosα+3sinα)2+(sinα−3cosα)2]
Replace h by x and k by y ⇒(3x−1)2+9y2=90(cos2α+sin2α) ⇒(x−31)2+y2=990 ⇒(x−31)2+y2=10 ⇒R=10 ⇒29R2=29(10)=45