Let the equation of circle be x2+y2+2gx+2fy+c=0
where, centre (−g,−f)
The centre of given circle x2+y2−20x+4=0 is (10,0)
Condition of two circles cut. ∴2(g1g2+f1f2)=c1+c2 2(−g×10+0×(−f)=c+4 2(−10g)=c+4
Also, circle touch the line x=2. ∴ The perpendicular distance from centre to the circle is equal to radius of the circle. ∴1∣−g−2∣=g2+f2−c ⇒(g+2)=g2+f2−c ⇒g2+4+4g=g2+f2−c ⇒f2−4g−c−4=0 ⇒f2−4g+4+20g−4=0 ⇒f2+16g=0
Hence, the locus of (−g,−f) is y2−16x=0 ⇒y2=16x