Let the locus of centre of circle be (h,k) touching (y−1)2+x2=1 and X-axis shown as
Clearly, from figure,
Distance between C and A is always 1+∣k∣,
i.e. (h−0)2+(k−1)2=1+∣k∣, ⇒h2+k2−2k+1 =1+k2+2∣k∣ ⇒h2=2∣k∣+2k ⇒x2=2∣y∣+2y
where ∣y∣={y,−y,y≥0y<0 ∴x2=2y+2y,y≥0
and x2=−2y+2y,y<0 ⇒x2=4y, when y≥0
and x2=0, when y<0 ∴{(x,y):x2=4y, when y≥0}∪{(0,y):y<0}