Let the general equation of circle be x2+y2+2gx+2fy+c=0 ....... (i)
It cuts the circle x2+y2−20x+4=0 orthogonally ∴2(−10g+0×f)=c+4⇒−20g=c+4 .......(ii) ∵ circle (i) touches x=2
therefore, perpendicular distance from centre to the tangent to the circle=radius ⇒∣∣12+02−g+0−2∣∣=g2+f2−c ⇒(g+2)2=g2+f2−c ⇒g2+4+4g=g2+f2−c⇒4g+4=f2−c ... (iii)
on eliminating c from (ii) and (iii) we get −16g+4=f2+4⇒f2+16g=0
Hence, locus of (−g,−f) is, y2−16x=0 (replacing −f & −g by x & y )