Let the line be ax=by=cz…(1)
If line (1) intersects the line 2x−1=4y+3=3z−5, then ∣∣a21b4−3c35∣∣=0 ⇒29a−7b−10c=0…(i)
Similarly, if the line (1) intersects with the line 2x−4=3y+3=4z−14, then ∣∣a24b3−3c414∣∣=0 ⇒9a−2b−3c=0…(ii)
From (i) and (ii), we have 1a=−3b=5c ∴ The line is 1x=−3y=5z