Q.
The line joining A(bcosα,bsinα) and B(acosβ,asinβ), where a=b, is produced to the point M(x,y) so that AM:MB=b:a. Then, xcos2α+β+ysin2α+β is equal to
Since, AM:BM=b:a ∴M divides AB externally in the ratio b:a ∴x=b−ab⋅acosβ−abcosα ...(i) y=b−abasinβ−absinα ...(ii)
Divide Eq. (i) by Eq. (ii), we get yx=sinβ−sinαcosβ−cosα =−2cos2α+βsin2α−β2sin2α+βsin2α−β ∴xcos2α+β+ysin2α+β=0