Q.
The line 2x+y=1 is tangent to the hyperbola a2x2−b2y2=1. If this line passes through the point of intersection of the nearest directrix and the X-axis, then find the eccentricity of the hyperbola.
Point of intersection is (ea,0)
Since 2x+y=1 passes through (ea,0) ⇒e2a+0=1 ⇒a=2e
Also 2x+y=1
is a tangent to the hyperbola a2x2−b2y2=1 ⇒12=a2(−2)2−b2 ⇒4a2−b2=1 ⇒4a2−a2(e2−1)=1…[ As b2=a2(e2−1)] ⇒4(2e)2−(2e)2(e2−1)=1 ⇒e2−4e4−e2=1 ⇒5e2−e4=4 ⇒e4−5e2+4=0 ⇒(e2−1)(e2−4)=0 ⇒e2=4 ⇒e=2