Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The limit of [(1/x2)+((2013)x-1/ex-1)×(1/ex-1)] as x â 0
Q. The limit of
[
x
2
1
+
e
x
−
1
(
2013
)
x
−
1
×
e
x
−
1
1
]
as
x
→
0
2495
214
WBJEE
WBJEE 2013
Limits and Derivatives
Report Error
A
approaches
+
∞
B
approaches
−
∞
C
is equal to
l
o
g
e
(2013)
D
does not exist
Solution:
x
→
0
lim
{
x
2
1
+
e
x
−
1
(
2013
)
x
−
e
x
−
1
1
}
=
x
→
0
lim
{
x
2
1
+
e
x
−
1
(
2013
)
x
−
1
}
=
x
→
0
lim
{
x
2
1
+
x
(
2013
)
x
−
1
⋅
e
x
−
1
x
}
=
x
→
0
lim
x
2
1
+
x
→
0
lim
x
(
2013
)
x
−
1
⋅
x
→
0
lim
e
x
−
1
x
=
+
∞
+
lo
g
(
2013
)
⋅
1
=
+
∞